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LE'lTER TO THE EDITOR 

Soliton structures in a discrete chain 

S E Burkov, V L Pokrovsky and G Uimin 
L D Landau Institute for Theoretical Physics, Vorobjevskoe Shosse 2, 117940, Moscow, 
USSR 

Received 28 June 1982 

Abstract. Periodic soliton structures are shown to be energetically favourable in a certain 
range of parameters of the Frenkel-Kontorova model. These structures form cascades 
which can be obtained from each other by a scaling transformation. 

The problem of the commensurate-incommensurate (CI) phase transition is closely 
related to the Frenkel-Kontorova model. This model describes a one-dimensional 
chain of particles connected with strings of length a and placed in an external periodic 
field V(x). The problem consists in the minimising of the potential energy 

E=C[4(xn+l-xn-a)Z+ V(x,)] 
n 

where xn is the coordinate of the nth particle. Here we consider the case of a weak 
potential I VI << 1 with the period b = a (1 + 8) and the initial misfit S << 1. A crude 
description of such a system may be given by the continuous approximation (Frank 
and Van der Merve 1949, Pokrovsky and Talapov 1978), which predicts a continuous 
transition from a commensurate (c) to an incommensurate (I) phase at a certain value 
of 6 = Scl - Jv. At S < Scl the c phase with xn = nb has the lowest energy. At S > Scl 
solitons appear spontaneously in a chain. The equilibrium distance between solitons 
is 

1 - Mn[(S - &1)/&1II (2) 

where lo - V-*'* is the width of a single soliton. The principal effect of a discreteness 
is the pinning of solitons by a lattice. The pinned phase exists in a narrow interval 
of the misfit 

&1< 6 c Sc2 (3) 
where Scz -ac1 -exp(-w2V-') (Aubry 1979, Pokrovsky 1981). The main purpose 
of this work is to investigate the soliton structures in the abovementioned range of a 
misfit (3). 

The minimising of the energy (1) leads to a second-order difference equation, 
which can be reduced to the following system of first-order difference equations: 

(4) 
This system can be treated as a mapping T of the two-dimensional space onto itself. 
Owing to the periodicity of V ( x )  this transformation can be considered as a mapping 
of a two-dimensional torus 0 =z x, y s b. Let the fixed point A ( x  = 0, y = 0) correspond 

xn+1= xn + yn,  Y n + l =  Yn + V'(xn + yn). 
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to the c phase. Different solutions of equations (4) lie on the invariant curves of the 
transformation T. In particular, a single-soliton solution lies precisely on separatrices. 
In the continuous approximation the separatrix starts from the fixed point A and 
goes back to the same point. The discreteness results in a splitting of the separatrix 
into two curves rl and r2, one of which, rl, goes out from the point A while the 
second one T2 enters it. The separatrices rl and Tz intersect each other in an infinite 
set of so-called homoclinic points. A single-soliton configuration is formed by a subset 
of homoclinic points shown in figure 1 by open circles. It is just the intersection of 
separatrices which is the cause of a soliton pinning by a lattice. The translation of a 
soliton over the period b(xn  + x , + ~ )  does not change the energy (1). The continuous 
transition between the configurations differing by a translation over the period can 
be realised by a saddle-point trajectory x n ( s ) .  The difference between the maximal 
and minimal energy along this trajectory is precisely the pinning energy. It has been 
estimated by Pokrovsky (1981) as Epln - exp(-.rr2V-1’2). The saddle-point configur- 
ation corresponds to an extrema1 value of the energy (1) and satisfies the same boundary 
conditions as the single-soliton configuration. Since the transformation T conserves 
the orientation of intersecting curves, the homoclinic points corresponding to the 
single-soliton and saddle-point configurations alternate. The simplest situation is 
depicted in figure 1, where the saddle-point configuration is shown by the full circles. 

. 

I’ 
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Figure 1. The splitting of a separatrix. The open circles correspond to a single-soliton 
solution. The other homoclinic points correspond to a saddle-point configuration. 

We consider now a multi-soliton structure (8 > In the misfit interval ( 3 )  the 
intersoliton distance z is much larger than the soliton width Io. So solitons can be 
considered as particles with the interparticle interaction U ( z )  - exp(-z/lo), whilst 
their interaction with a lattice is described by the periodic pinning potential 

VP(X) = Epin cos(2.rrx/b). 

The energy of such a system has the form 

where zn are coordinates, CL - (8 -acl) is a chemical potential of solitons, and N is 
their total number. 

In a small vicinity of SC1 (8 -ac1 << SCz -acl) the interaction between solitons is 
much weaker than the magnitude of the pinning energy ,Epi,,. So it is possible to regard 
solitons as being located at the minima of the potential Vp(z). Now the problem is 
reduced to the choice of the integers zn minimising the total energy: 
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(we put here b = 1). This problem can be solved by a well known linear-programming 
method as has been done by Hubbard (1978) and Pokrovsky and Uimin (1978). 
Within the misfit range (3) the lowest energy corresponds to periodic soliton structures. 
In the first approximation such a structure represents the simple soliton lattice with 
the period m. The number m is an integer c l o ~ $  to the minimum point of the function 

F ( z )  = z - ’ [ u ( z ) - p ] .  

We denote by pm a special value of p which satisfies the condition F ( m )  = F ( m  + 1). 
A more complex periodic structure appears in a small vicinity of each pm. The 
elementary cell of such a structure contains an ordered sequence of intervals of lengths 
m and m + 1. The scaling transformation reduces the new structures to the preceding 
soliton structures by considering the interval ‘m ’  as a particle and the interval ‘ m  + 1’ 
as an empty site. The new cascade of periodic structures is subjected to a tiny splitting 
which is connected with the next scaling transformation. The values of pm can easily 
be evaluated as p,,, - exp(-m/lo). The range of p near pm, in which the degeneration 
results in the next cascade of periodic structures, is A p  - p L .  The hierarchy of 
structures of a different complexity degree is represented in figure 2. 

The same result can be explained in the language of the T transformation. Simple 
structures with the period m are represented by the periodic trajectories of T consisting 
of m points on the torus. The structures of the next type 

m , m , .  . . , m , m + l  - 
s times 

can be presented by a periodic trajectory containing (ms + m + 1) points and encircling 
the torus ( s  + 1 )  times. On these periodic trajectories the energy (1) takes the minima 
in a finite range of 6:  SC1 s 6 s a r .  We conjecture that the RHS of this inequality 
coincides with the misfit value SCz, which is the threshold for a transition to the 

I 1 Pm 

CI 

Figure 2. A schematic representation of the scaling hierarchy of periodic soliton structures. 
The graph shows the resulting concentration C of particles via the chemical potential w. 
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Kolmogorov-Arnold-Moser trajectories. On these trajectories the pinning energy 
vanishes. 

A similar consideration can straightforwardly be applied for the determination of 
a ground-state structure of the Frenkel-Kontorova model with a strong potential 
v >> 1. 
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